

Daily Tutorial Sheet-8 Level-2

96.(B) A:
$$C: CH - COOEt$$

$$CH_3$$

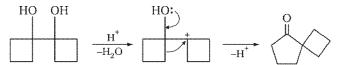
$$C: CH - CH_2OH$$

$$CH_3$$

$$CH_3$$

97.(A) $R - O - R \xrightarrow{HI(excess)} 2R - I$

1, 2-iodide are unstable and does not exist.

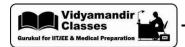

$$\mathsf{I}-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{I} \xrightarrow{-\mathsf{I}_2} \mathsf{CH}_2 = \mathsf{CH}_2 \xrightarrow{\mathsf{HI}} \mathsf{CH}_3\mathsf{CH}_2\mathsf{I}$$

98.(D)
$$(A \text{ is clearly glycol i.e. } CH_2OH)$$
 $(A \text{ is clearly glycol i.e. } CH_2OH)$
 $(A \text{ is clearly glycol i.e. } CH_2OH)$
 $(A \text{ is clearly glycol i.e. } CH_2OH)$

Now, A $\xrightarrow{\text{conc.}}$ B (Visualise Pinacol - Pinacolone type rearrangement)

$$\begin{array}{c} \text{CH}_2\text{OH} \\ \mid \\ \text{CH}_2\text{OH} \end{array} \xrightarrow{\text{H}^+} \begin{array}{c} \text{CH}_2 \overset{\dagger}{\text{O}} \text{H}_2 \\ \mid \\ \text{CH}_2\text{OH} \end{array} \xrightarrow{\text{H}^-} \begin{array}{c} \overset{\dagger}{\text{C}} \text{H}_2 \\ \mid \\ \text{CH}_2 \end{array} \xrightarrow{\text{H}^-} \begin{array}{c} \overset{\dagger}{\text{C}} \text{H}_3 \\ \mid \\ \text{H} \end{array} \xrightarrow{\text{H}^-} \begin{array}{c} \text{CH}_3 \\ \mid \\ \text{Shift} \end{array} \xrightarrow{\text{H}^-} \begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CHO} \end{array} \xrightarrow{\text{H}^+} \begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CHO} \end{array}$$

- **99.(D)** Excess of alcohol will force the reaction (clearly) in forward direction i.e. acetal formation. Use of dry acid does not allow hydrolysis of acetal back to aldehyde.
- **100.(C)** Visualise pinnacol-pinnacolone rearrangement to form (A)



During pinnacol-pinnacolone rearrangement, visualise ring expansion (migration) to form a 5-C ring.

101.(BD) Examine all the choices:

(A)
$$C_2H_5OH \xrightarrow{HI} C_2H_5 - I \xrightarrow{Mg} C_2H_5MgI \xrightarrow{H_2O} C_2H_6 \xrightarrow{1. \text{ Na}} \text{No reaction}$$

(B) II :
$$C_2H_5MgBr \xrightarrow{HCHO} C_2H_5 - CH_2OH \xrightarrow{1. Na} C_2H_5CH_2 - OEt$$

Ethylpropyl ether

(C)
$$C_2H_5OH \xrightarrow{H^+} C_2H_5 - O - C_2H_5$$
 diethyl ether

(D)
$$C_2H_5OH + CH_3CH_2CH_2OH \xrightarrow{H^+} C_2H_5OCH_2CH_2CH_3$$

102.(D) ONa OH OH OH O
$$-C - CH_3$$

CO₂
 H_2O
COONa H^+
 H_2O
COOH Ac₂O
COOH
Acetyl salicylic acid

103.(ABC) Examine all choices.

(A)
$$OH$$

$$CH_3)_2C = CH_2$$

$$H_3C - C - CH_3$$

$$CH_3$$

$$CH_3$$

$$OH$$

$$C(CH_3)_3C - CI$$

$$AICI_3$$

$$C(CH_3)_3$$

$$C(CH_3)_3$$

The correct options are : A, B, C. Note that all these reactions are Friedal craft alkylation, with alkyl carbocation as an electrophile.

104.(AC)
$$CH_3CH_2OH \xrightarrow{H^+} CH_3 - CH_2 - OH_2 \xrightarrow{CH_3CH_2OH} CH_3CH_2 - OH_2CH_3 + H_2OH_3CH_2 - OH_3CH_2 - OH_3CH_2 - OH_3CH_2 - OH_3CH_3 \xrightarrow{-H^+} CH_3CH_2 - OH_3CH_3 \xrightarrow{-H^+} CH_3CH_3 - OH_3CH_3 \xrightarrow{-H^+} CH_3CH_3 - OH_3CH_3 \xrightarrow{-H^+} CH_3CH_3 - OH_3CH_3 - OH$$

Hence A, C are correct options.

105. [A-q, t] [B-r, s] [C-p, r, s] [D-p]

- (A) Phenol $\xrightarrow{\text{FeCl}_3}$ violet colour (Typical test of phenol). It is soluble in NaOH.
- **(B)** EtOH is oxidised easily by $Cr_2O_7^{2-}/H^+$ being 1° alcohol

$$Cr_2O_7^{2-} + H^+ + EtOH \longrightarrow Cr^{3+} + CH_3COOH$$
 orange green

EtOH $\xrightarrow{\ \ I_2 \ \ }$ CHI $_3$ \downarrow ; gives iodoform test OH

- (C) Ph CH CH₃ (2° alcohol give white turbidity with ZnCl₂ / HCl in 3 5 min unlike 1° ROH)
 - Since it has group CH₃ CH(OH) it will give iodoform test.
 - It is oxidised to ketone by $Cr_2O_7^{2-}/H^+$
- **(D)** $Me_3C-OH\longrightarrow 3^\circ$ alcohols gives white turbidity instantly with $ZnCl_2/HCl$
 - 3° alcohols resist oxidation